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1 Executive Summary 

The primary objective of this project is to develop an advanced algorithm 
for parallel supercomputers to model time-dependent magnetohydrodynam- 
ics (MHD) in all three dimensions. This will provide a valuable tool for 
the design and testing of plasma related technologies that are important to 
the Air Force and industry. Implementing the algorithm on parallel super- 
computers will allow the detailed modeling of realistic plasmas in complex 
three-dimensional geometries. 

We have developed a time-dependent, two-dimensional, arbitrary-geometry 
version of the algorithm, placed it into a testbed code, added the modifica- 
tions necessary for viscous and resistive effects, and tested the code against 
known analytical problems. We have implemented the algorithm on a paral- 
lel architecture and investigated parallelization strategies. Future plans in- 
clude installing the algorithm into MACH2, optimizing the parallelization, 
extending the code to three dimensions, installing the three dimensional 
algorithm into MACH3,1 and calibrating the code with experimental data. 

As a result of this project several professional collaborations now exist 
between the Department of Aeronautics and Astronautics at the University 
of Washington and the Air Force Phillips Laboratory, Lawrence Livermore 
National Laboratory, the University of Michigan, the University of Colorado, 
and other departments at the University of Washington. The work from this 
project has been presented at international conferences and one publication 
has already been published in a refereed journal and another publication 
has been accepted for publication pending revisions. 

2 Project Description 

Plasmas are essential to many technologies that are important to the Air 
Force, some of which have dual-use potential. These applications include 
nuclear weapons effects simulations, radiation production for counter pro- 
liferation, fusion for power generation, and advanced plasma thrusters for 
space propulsion. In general, plasmas fall into a density regime where they 
exhibit both collective (fluid) behavior and individual (particle) behavior. 
Many plasmas of interest can be modeled by treating the plasma like a con- 
ducting fluid and assigning macroscopic parameters that accurately describe 
its particle-like interactions. The magnetohydrodynamic (MHD) model is a 
plasma model of this type. 



2.1 Research Objectives 

The objectives of the project are to: 

• Develop a coupled, implicit, time-accurate algorithm for three-dimensional, 
viscous, resistive MHD simulations; 

• Incorporate the algorithm into the MACH3 code, which was developed 
at the Air Force Phillips Laboratory; 

• Validate the code with analytical and experimental data; and 

• Apply the code to analyze plasma experiments at the University of 
Washington [Helicity Injected Tokamak (HIT)2] and at the Phillips 
Laboratory [the liner implosion system (WFX),3 the dense plasma 
focus experiment, and magnetic flux compression generators]. 

2.2 Technical Description 

2.2.1     MHD Plasma Model 

The three-dimensional, viscous, resistive MHD plasma model is a set of 
mixed hyperbolic and parabolic equations. The Navier-Stokes equations are 
also of this type. This project applies some advances that have been made in 
implicit algorithms for the Navier-Stokes equations to the MHD equations. 
These implicit algorithms solve the equation set in a fully coupled manner, 
which generates better accuracy than the current methods used for MHD 
simulations. 

v. "ien expressed in conservative, non-dimensional form, the M.'D model 
is described by the following equation set. 

d_ 
dt 

P 
pv 
B 

. e 

+ V 

pv 
pvv - BB + (p + B • B/2) I 

vB-Bv 
. (e + p+B-B/2)v-(B-v)B 

0 
-i r 

(RmAiy1 Ü(fj,B) 
{ReAiy1 2 

L (RcAiy1 v • f - {RmAl)~x f-(VxB)xB + f (PeAl)'1 k-VT \ 

(1) 

The variables are density (p), velocity (v), magnetic induction (B), pressure 
(p), energy density (e),'and temperature (T).   S(T?, B) is the transverse 



resistive electric field tensor which is described in Section 2.2.5.  A/,- is the 
ion mass. The energy density is 

V v-v     BB ! 
e =  

7-1 + P   2    +     2 (2) 

where 7 = cp/cv is the ratio of the specific heat s.   The non-dimensional 
tensors are the stress tensor (r), th e electrical resisti vity (?7), and the thermal 
conductivity (k), and I is the identity matrix. The non-dimensional numbers 
are defined as follows: 

Alfven Number : Al = VA/V 
Reynolds Number : Re = LVjv 

(3) 
Magnetic Reynolds Number :    Rm = HoLV/i] 
Peclet Number : Pe = LV/K 

The characteristic variables are length (L), velocity (V), Alfven speed (V'4 = 
B/\jfi0p), kinematic viscosity {v), electrical resistivity (7/), and thermal dif- 
fusivity (K = k/pcp). fi0 is the permeability of free space (47T X 10-7). 

For convenience, the MHD equation set [eqn(l)] is rewritten in the fol- 
lowing compact form 

dQ 

dt 
+ v-r^ = v-fp, (4) 

where Q is the vector of conservative variables, Th is the tensor of hyperbolic 
fluxes, and Tv is the tensor of parabolic fluxes. The forms of these vectors 
and tensors can be seen from eqn(l). The hyperbolic fluxes are associated 
with wave-like motion, and he parabolic fluxes are associated with diffusion- 
like motion. 

2.2.2     Algorithm Overview 

Because of the natural differences between hyperbolic and parabolic equa- 
tions, the methods for solving them are very different. Since the MHD 
equations are of mixed type the hyperbolic and parabolic terms must be 
handled differently. The hyperbolic fluxes are differenced by applying an 
implicit, approximate Riemann algorithm that properly accounts for their 
wave-like behavior. The parabolic terms are discretized by applying explicit 
central differencing. 

The design of the overall algorithm is primarily driven by the numerical 
techniques that must be used to discretize the hyperbolic terms. Therefore, 



we begin by considering the ideal MHD equations, which are obtained from 
eqn(4) by setting all the parabolic terms (Tp) to zero. 

In one dimension they are 

W,d£=dQ        dQ 
dt + dx    dt +   dx 

o, (5) 

where F is the flux vector in the x direction (i.e. Th = (F,G, H)) and A is 
its Jacobian. 

-I 
Here, Q is the vector of conserved variables: 

Q = (P, pvx, pvy, pvz, By, Bz,e)T . (7) 

This is a set of hyperbolic equations and thus A has a complete set of real 
eigenvalues given by 

A = (vx, Vx ± Vfast, vx ± Vsiow, vx ± VAx)
T , (8) 

where Vjast and Vsiow are the fast and slow magnetosonic speeds, and VAX 

is the Alfven speed based on the x component of the magnetic field. These 
can be expressed as 

V2 Vfast 

V. 2 
slow 

«2+ K? +>/(<* +K?)2- - ^IVL (9) 

«2 

-4WL (10) 

(11) 
Pop 

Here, cs is the ion sound speed, which for a perfect gas is 

c2 = 
IP 
P ' 

(12) 

Information propagates along characteristics which travel at wave speeds 
given by the eigenvalues. Most modern numerical techniques for solving 
hyperbolic equations are based upon the idea of splitting the fluxes into 
components due to left and right running waves. Then each part of the flux 
can be differenced in an upwind manner, which greatly reduces numerical 
oscillations and stabilizes the solutions. 



It is well known that if a hyperbolic equation is solved with an explicit 
scheme, then the allowable time step to maintain numerical stability is given 
by the CFL (Courant-Friedrichs-Lewy) condition, which in the case of the 
ID MHD equations is 

At<7-^17 ■• (13) K + Vjast\ 

For the high magnetic fields and low densities common in many plasma 
experiments, the fast magnetosonic speed is quite high, and thus the time 
step is prohibitively small. We are often interested in only modeling the 
physics that occurs slower than Alfven time scales. For example, it can be 
shown that resistive tearing modes, which are important in studying fusion 
plasmas, evolve on a time scale that is given by4 

Ttearing « T^T^ = (Luf5 TA. (14) 

TA is the Alfven time, TV is the resistive diffusion time, and Lu is the 
Lundquist number, which is given by 

Lu = ^- - RmAl. (15) 

If Lu is 106, which is typical for laboratory plasmas in fusion applications, 
the resistive tearing time is approximately 4000 times larger than the Alfven 
time. By treating the hyperbolic fluxes implicitly in time, the stability 
restriction on the time step is removed, and the solution can be advanced at 
the larger resistive tearing time step. This is our motivation for proposing 
an implicit scheme. 

The starting point for deriving the algorithm is the two-dimensional ideal 
MHD equations in Cartesian form 

dQ      dF     ÖG     n 

We then discretize eqn(16) using first order Euler time differencing to get 

A? 
= -ßu(Q'l+1) = -fi^1 (17) 

where R is 

Rij - ^i+l/2.j -  ^.-l/2,i + G'i,j+1/2 - G'iJ-l/2- (18) 



Note that in this equation and all that follow the grid metric terms (cell 
areas and volumes) are omitted for clarity. We linearize R as follows: 

Ä?1«Äs-+(H)y(^i-^-) (19) 

Substituting this expression back into eqn(17) and rearranging, we get 

j_      fdR 
At + \dQ 

*3. 

AQ?j = -R?j.    ' (20) 

Here AQ is defined as 
AQ" = Q?/1 - Q?-. (21) 

The left hand side of the eqn(20) is an implicit operator operating on AQ. 
It is a large banded block matrix. In three dimensions, it is an (Imax X 
Jmax x Kmax) by (Imax x Jmax x Kmax) matrix, where Imax is the number of 
cells in the x direction, etc. It is quite costly to invert a matrix of this size 
directly. We choose to invert it using an approximate factorization, which 
can be done more efficiently. When solved this way, eqn(20) is no longer 
time accurate. However, we can still achieve time accuracy with this type 
of scheme by adding the time derivative of Q as a source term to the right 
hand side of the equation. We then have 

9-^)n+l = -Rtl~SitX (22) 

where 

sir = ^b (3^+1 - 4Q>>+Q^x) * W       (23) 

The T in eqn(22) can be thought of as a pseudo time variable. At each 
physical time step, eqn(22) is solved iteratively in pseudo time until the left 
hand side vanishes. When the solution converges, our original equation 

% - -* <*> 

is solved. This technique is known as dual time-stepping.5 Note that in 
eqn(23) a more accurate time derivative can be used at the expense of the 
additional memory needed to store the Q vectors from previous time steps. 

One advantage of the strategy outlined above is that the implicit op- 
erator and the right hand side in eqn(20) are decoupled.    The structure 



of the matrix no longer depends on the details of the discretization of the 
right hand side fluxes. In the following sections we will describe the relax- 
ation scheme that is used to iteratively invert the implicit operator and the 
approximate Riemann solver that is used to form the right hand side fluxes. 

2.2.3     LU-SGS Relaxation Scheme 

We use the lower-upper symmetric-Gauss-Seidel (LU-SGS) method to itera- 
tively invert the implicit operator.6 To derive this method, we first consider 
the following first order accurate flux-vector splitting of R (at time level 
n + 1) in eqn(17): 

Rii = f*- ftij + *£ij - ^ + Gtj ~ Gtj-x + G~J+l - G-3       (25) 

where F+ is the portion of the F flux vector corresponding to right-running 
waves, and F~ is the portion corresponding to left-running waves, and G+ 

and G~ are similarly defined. This equation is linearized to obtain 

{I + At (A± - A+_ltj + AT+hj -A-J + B±- £+_, + B~:+l - Z^)} 

x AQ£- = -AtR.% 

where A+ is the Jacobian of F+, and so on. We approximate these Jacobians 
as 

A+ = -(A + PA) (27) 

*- = \{A-PA) (28) 

where pA is the maximum eigenvalue (spectral radius) of A. If we then 
iteratively solve this simplified implicit operator using a forward Gauss- 
Seidel sweep followed by a backward sweep, the resulting algorithm can be 
written as 

{l + At[(pA + pB)l-AtUj-Bt^x}} 
x {l + At[(pA + PB)nA-+^ + B-:+l}}       (29) 

xAQ^ = -{l + At(pA+pB))AtR^ 

The forward sweep is equivalent to inverting a lower block diagonal matrix 
[the first braced term in eqn(29)], and the backward sweep is equivalent to 
inverting an upper block diagonal matrix [second braced term in eqn(29)]. 



This structure leads naturally to several vectorization and parallelization 
strategies. 

If we sweep through the computational domain along lines of constant 
i + j (in 2-D), each term along these lines is independent of the others and 
depends only on data that has already been updated during the current 
sweep. This type of fine grain parallelization is ideal for vector computers. 
However, that degree of parallelism is not efficient for parallel computers 
because the extra communication time between processors exchanging data 
more than offsets the gain in computational efficiency. To optimize this 
algorithm for a parallel architecture, we need to break up the computational 
domain into blocks and send each block to a different processor. At the 
boundaries between the blocks, we reduce the data dependency between the 
blocks by using data from the previous time step along the block boundaries. 
This effectively reduces those points into a Jacobi iteration. However, the 
interior points are still solved with a Gauss-Seidel iteration. As long as 
the blocks are large enough that there are many more interior points than 
boundary points, then the overall convergence rate is approximately the 
same as Gauss-Seidel. 

2.2.4    Approximate Riemann Solver 

The fluxes on the right hand side of eqn(20) are discretized using a Roe-type 
approximate Riemann solver.7 In this method the overall solution is built 
upon the solutions to the Riemann problem defined by the discontinuous 
jump in the solution between each pair of cells. The numerical flux for a 
first-orde accurate (in space) Roe-type solver is written in symmetrk form 
as 

*i+i/2 = \ {Fi+i + Fi) - ± £/fc (Qj+1 - Qi) |Afc| rk (30) 

where rk is the kth right eigenvector, A^ is the absolute value of the kth 

eigenvalue, and lk is the kth left eigenvector. The values at the cell interface 
(i+1/2) are obtained by a simple average of the neighboring cells. These first 
order accurate upwind fluxes are used in the vicinity of sharp discontinuities 
in order to suppress oscillations in the solution. We achieve a globally second 
order accurate solution by using a flux limiter that modifies the first order 
flux so that it uses second order central differencing in smooth portions of 
the flow. We are using a minmod limiter.8 

Once the eigenvalues and eigenvectors are obtained and properly nor- 
malized to avoid singularities, it is relatively straight-forward to apply this 



scheine to the one-dimensional ideal MHD equations.9,10 Unlike for the Eu- 
ler equations, the extension to more than one dimension is non-trivial. The 
reason is that in more than one dimension, the Q vector must include Bx in 
addition to the other magnetic field components. (For the one-dimensional 
case Bx is constant by virtue of V ■ B =0). Since the j x B force acts 
perpendicularly to the directions of j and B, the F flux vector has a zero 
term corresponding to Bx. Thus, the Jacobian matrix of F is singular and 
has a zero eigenvalue. This means we no longer have a complete set Of phys- 
ically meaningful eigenvectors. Physically, we expect information to travel 
either at the fluid velocity or at the fluid velocity plus or minus the wave 
speeds. Simply dropping Bx from the equation set is not a viable option, 
because Bx needs to change in order to maintain V • B = 0. Powell et al., 
recently solved this problem by modifying the Jacobian in such a way as to 
change the zero eigenvalue to vx (keeping the others unchanged), and then 
adding in a source term that exactly cancelled out the terms introduced by 
the modified Jacobian.11 

The source term is 

^div — 

P 
B 
v 

v-B 

V-B (31) 

It is proportional to the divergence of B and thus very small. 

2.2.5     Parabolic MHD Terms 

To this point we have only considered the hyperbolic terms. When finite 
viscousity and resistivity are included, the parabolic terms of the MHD 
equations [right hand side of eqn(l)] become important. For reasonably large 
values of Re and Rm (easily in the range of interest for most applications), 
the parabolic terms can be differenced explicitly without constraining the 
allowable time step. In this work we difference the parabolic terms explicitly 
in time with central differences in space. They are added to the right hand 
side fluxes arising from the approximate Riemann solver. 

During the past year, we have spent a concerted effort on the parabolic 
terms to achieve accurate and stable calculations. Originally we used the 
same flux centering scheme that is used in MACH3 where the fluxes are 
calculated at the cell vertices and a divergence law is applied around the 
cell center. See Figure 1(a). A detailed stability analysis demonstrates the 



I Grid 

(a) (b) 

Figure 1: Positioning for (a) vertex-centered and (b) face-centered parabolic 
fluxes. The face-centered fluxes produced more accurate and stable solu- 
tions. 

potential for grid decoupling and a resulting odd-even instability. [This re- 
sult has important implications to all ALE (arbitrary Lagrangian-Eulerian) 
codes and will soon be submitted to a journal.] Locating the parabolic 
fluxes at the cell faces which corresponds to the location of the hyperbolic 
fluxes produced solutions that converged faster and were more accurate than 
locating the parabolic fluxes at the cell vertices. See Figure 1(b). 

We also point out that the resistive electric field term in eqn(l) is differ- 
ent than the one commonly used and presented last year V-^-VB which d->es 
not hold for spatially dependent anisotropic resistivity. Plasma resistivity 
is a strong function of temperature and of the orientation to the magnetic 
field. Therefore, the assumption of spatially constant isotropic resistivity is 
incorrect. The new term reduces from the conservative formulation of the 
more general equation. 

/dVV x (77• V x B) = idS x (77• V x B) =  /dW • § = fdS-S (32) 

where the transverse resistive electric field tensor is defined as 

0 
Vz(dyBx - dxBy) 
T}y{dzBx -dxBz) 

Vz (dxBy - dyBx)  % (dxBz - dzBx) 
0 Vx(dyBz-dzBy) 

T)x{dzBy-dyBz) 0 
(33) 

The dimensionless numbers have been removed for clarity. 
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3     Benchmarks and Applications 

3.1    Ideal MHD Test Problems 

3.1.1     One-Dimensional Coplanar MHD Riemann Problem 

This test problem served to validate the approximate Riemann solver, be- 
cause the computed solution could be checked against the exact analytical 
solution. For the one-dimensional ideal MHD equations (variations in x 
only), the equation for Bx reduces to Bx is constant and drops from the 
equation set, eliminating the zero eigenvalue in this case. The coplanar MHD 
equations are obtained from the full one-dimensional ideal MHD equations 
by setting Bz and vz to zero, thus allowing only planar flow and fields. This 
eliminates the vx ± VAX eigenvalues, leaving a system of five equations with 
five eigenvalues. Mathematically, the Riemann problem is an initial bound- 
ary value problem in which there is initially a discontinuity in the data such 
that the left half of the domain is at one state and the right half of the 
domain is at another state. As the solution evolves in time, shock waves 
and rarefaction waves form and travel at speeds related to the wave speeds 
of the system. Although not physically realizable in plasmas, this problem 
is analogous to a shock tube in hydrodynamics. 

For the full five-wave case, there is not a closed form analytical solution. 
Instead, the solution must be checked by calculating generalized Riemann 
invariants across the rarefaction waves and Rankine-Hugoniot jump condi- 
tions across the shock waves. Since this has already been done by Brio and 
Wu9 for a specific set of conditions, for our test case we used the same ini- 
tial conditions as they used in or.:T to allow direct comparison with their 
published solution. The initial left state was p = 1, p = 1, and By = 1. The 
initial right state was p = 0.1, p = 0.125, and By = -1. The velocities were 
zero and Bx was 0.75. Figure 2 shows the initial density distribution and 
its numerical solution after 400 time steps on an 800 point grid with a CFL 
number of 0.8. Figure 3 is the corresponding plot of the transverse magnetic 
field (By). The solution was computed using explicit time-stepping. The so- 
lution clearly shows five waves formed corresponding to the five eigenvalues. 
They are a fast rarefaction wave, a slow shock, a contact surface moving to 
the right, a slow compound wave (rarefaction and shock), and a fast rar- 
efaction wave moving to the left. Note that the numerical method is able 
to resolve the shocks over a few grid points without introducing numerical 
oscillations. This is one of the advantages of the flux splitting approach 
we have used.   The computed solution overlaid exactly on Brio and Wu's 
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Figure 2: Numerical solution of coplanar Riemann problem. Density profile 
is shown initially / and after solution has evolved for 400 time steps. 
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Figure 3: Numerical solution of coplanar Riemann problem. Transverse 
magnetic field profile is shown initially and after solution has evolved for 
400 time steps. 
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published solution. 
If we set Bx = 0 above, then the problem reduces to a hydrodynamic 

shock tube problem if one replaces the thermodynamic pressure by the sum 
of the thermodynamic and magnetic pressures. For this case one can find a 
closed form exact solution to compare to the calculated solution. Figure 4 
shows both the calculated and the exact solution for p + B2 /2 after 80 time 
steps on a 100 point grid. There is very good agreement with the plateau 
values and the shock is resolved in a few cells without numerical oscillations. 

3.1.2     Oblique Shock 

This steady-state problem served primarily as a test of the LU-SGS implicit 
relaxation scheme. It also allowed us to examine the divergence of B at each 
point to ensure that the the zero eigenvalue fix was correctly implemented. 

The geometry for these tests is shown in Figure 5. A super-Alfvenic flow 
(Mach number of 3) impinges on a perfectly conducting plate at an angle 
of 25 degrees. In addition, a vertical field of By = 0.2 is imposed at the 
left boundary. Since the plate is perfectly conducting, the component of the 
magnetic field normal to the plate is held at zero. 

Figure 6 shows the steady-state solution of this problem. Contours of 
density and magnetic field lines are plotted. The density contours show 
that an oblique shock forms, as expected. Outside of the shock, the field 
is convected in from the boundary. At the shock, the field lines bend due 
to the change in direction of the flow at the shock. Finally, the field lines 
bend at the conducting wall as all the field is converted to Bx to satisfy the 
boundary condif->n while keeping the divergence of B equal to zero. We 
verified that the divergence was less than 10~14 throughout the domain. 

This two-dimensional steady-state solution was obtained with explicit 
time stepping at a CFL number of 0.8 and with the LU-SGS implicit relax- 
ation scheme at an infinite CFL number (approximate Newton iteration). 
Figure 7 is a plot of the logarithm of the two-norm of the residual of the en- 
ergy equation as a function of the number of iterations. The implicit scheme 
converged to 10~14 in about 150 iterations, whereas the explicit scheme re- 
quired about 700 iterations. This is an acceleration factor of about 4.5 for 
the implicit scheme. Higher acceleration factors can be achieved for finer 
grids. 
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conducting wall, By = 0 

Figure 5: Geometry of oblique shock test problem. 

Figure 6: Density contours and field lines for an M = 3 flow impinging on 
a perfectly conducting plate at an angle of 25 degrees. 
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Figure 7: Logarithm of the two-norm of the energy equation residual plotted 
as a function of iteration number for explicit and implicit solutions of channel 
flow with horizontal velocity and vertical magnetic field imposed at the left 
boundary. 

3.2     Viscous and Resistive MHD Test Problems 

The viscous and resistive terms in the MHD equations comprise the right 
hand side of the equality in eqn(l). The addition of these terms to the 
algorithm involved the modification of the R vector in eqn(20). 

- R •Ä + V-T, (34) 

The R vector is updated with each iteration to produce a solution that is 
fully coupled. 

Using the divergence form of the parabolic terms reduces the differencing 
errors of the method. To preserve the accuracy on irregular meshes the 
derivatives are computed using a finite volume method. 

The validation of the parabolic terms consisted of applying the code to 
a suite of test problems with known analytical solutions. We validated in- 
dependently the terms associated with viscosity and those associated with 
resistivity and then the combined effect of all of the terms. The test prob- 
lems were: (1) fully developed laminar flow between two parallel plates, (2) 
magnetic field generated by a constant current density, and (3) Hartmann 
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flow. AD of these test problems were run until a steady-state solution devel- 
oped. The capability of the code to capture time-dependent physical effects 
was also tested by modeling the exponential resistive decay of the magnetic 
field generated in test problem 2. 

3.2.1     Laminar Flow 

We benchmarked the code to two types of laminar flows between infinite par- 
allel plates. The plates restrict the steady-state flow to be one-dimensional. 
No magnetic fields are present. This reduces the MHD equations to the 
Navier-Stokes equations. In these simulations a no-slip boundary condition 
was applied to the fluid in contact with the plates. 

The first type of flow to which we benchmarked was viscous flow gen- 
erated by one plate moving relative to the other plate. With no pressure 
gradient, constant viscosity, and incompressible flow, the equations reduce 
to 

(Re)-} V-f = (Re)-1 V2vx = 0 (35) 

which is Laplace's equation. For finite viscosity (Re) the analytical solution 
for the flow velocity is 

vx(y) = V0 (V- |) + KL| (36) 

where Vo is the velocity of the plate at y = 0 and VL is the velocity of the 
plate at y = L. 

The errors between the analytical solution and the code generated so- 
lution were below 10-9 (the two-norm of the Tor between the solutions). 
We performed the same simulation with no viscosity (ße —* oo). As would 
be expected, the flow velocity vanished everywhere except on the plates. 
When the viscous heating was modeled, a transient pressure gradient p(y) 
and transverse velocity vy(y) developed which heated the flow and increased 
its energy. 

The next test was laminar flow between stationary parallel plates with 
a constant pressure gradient in the flow direction. The governing equation 
is 

Vx-(pl) =^ = (Re)-lV2vx. (37) 

The solution for this flow is the parabolic equation given by 
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Figure 8: Simulation of laminar flow between parallel plates in the presense 
of a constant pressure gradient. The velocity profile is parabolic as expected 
from the analytical solution. 

Figure 8 shows the solution generated by the code.   Again the errors 
were reduced to below 10-9. 

3.2.2     Resistive Diffusion 

We benchmarked the resistive diffusion to a current sheet with a uniform 
current density. Values of the tangential magnetic field were specified at 
parallel infinite plates, in a similar way as the first of the laminar flow 
simulations. 

For no flow velocity and constant resistivity the MHD equations reduce 
to a Laplace equation similar to eqn( 35). 

(Am)_1V-VB = 0 (39) 

This equation has the same form for its solution as eqn(36). 

Bx{y) = B0 (l - |) + ßz,| (40) 

where Bo is the velocity of the plate at y = 0 and #/, is the velocity of the 
plate at y — L. 

The code agreed with the analytical solution to within errors of 10-9. 
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Figure 9: The Hartmann flow geometry showing the moving parallel plates 
and the cross magnetic field. 

The time-dependent resistive decay of a magnetic field can be represented 
analytically by solving the one-dimensional transverse magnetic induction 
equation with constant resistivity. 

dB 

dt 
(■11 

The solution is the exponential decay of the magnetic field with a sinusoidal 
profile. 

Bj_{t. x) oc exp    — 
Rm 

sin(7rz) 421 

for zero field boundary conditions at x = 0 and x = 1. 
This simulation was performed beginning v, fh a uniform field profile. 

The field decayed into the expected sinusoidal shape and the decay constant 
agreed with the analytical result to within 0.01%. The same test was re- 
peated on a parabolic clustered grid with Axmax/Axmin = 10. The same 
accuracy was achieved. 

3.2.3     Hartmann Flow 

Hartmann flow combines the effects of viscosity and resistivity. The problem 
geometry is the same as that for the laminar flow with the addition of a 
magnetic field that is normal to the plates, in the y direction. See Figure 9 
for an illustration. 

The governing equations for the Hartmann flow can be found by com- 
bining the magnetic field and momentum equations from the MHD model. 
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As before there will only be flow in the x direction. However, an applied 
electric field in the z direction must be included since it can generate an 
E0 X B0 flow in the x direction. The Hartmann flow is described by the 
differential equation, 

d2vx El 
L2 vx + 

E0 

dy2       L2 Vx '   B0 

where the Hartmann number is defined as 

= 0, 

D   r 

H = —^= = AlLVReRm. 

The analytical solution to the Hartmann flow is 

(43) 

(44) 

_Eo 
Bn 

smh(H(l-y/L)) smh(Hy/L) 
 — + Vi- 

1 

sinh(tf) '   'u    sinh(i/) 

sinh (H(l - y/L)) + smh(Hy/L) 

smh(H) 
(45) 

where the same no-slip boundary conditions have been applied. In the 
limit of no magnetic field, the solution reduces to the laminar flow solu- 
tion, eqn(36). 

The response of the magnetic field can be determined by solving the 
magnetic field equation for the field component that will be "dragged" with 
the flow. This magnetic field is described by 

dBx 

dy 
-(Rm) (vx + Eo 

Bn 

Using the flow solution of eqn(45), the solution for Bx is 

BX{V) 
(Rm\ (VL-Vo 

V H 
cosh(#/2) - cosh (H(L - 2y)/2L) 

sinh(tf/2) 

(46) 

(47) 

The boundary conditions are that Bx vanishes at the plates and the net 
current is zero. The first boundary condition may seem arbitrary, but it is 
consistent with the no-slip boundary condition applied to the flow solution. 
The second boundary condition relates the applied electric field, E0, and the 
plate velocities. 

Eo VQ+VL 

B0 2 
(48) 
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Figure 10: Hartmann flow simulation with H = 10''. Flow velocity vectors 
and magnetic field lines are shown. The velocity of the flow is zero every- 
where except at the plates. The magnetic field lines have a constant slope 
through the domain. 

Since the MHD equation set does not allow for an applied electric field, V0 

is set to —VL, SO that E0 = 0. 
We performed simulations for large, small, and intermediate Hartmann 

numbers, H. 
For a large Hartmann number, the effects of viscosity and resistivity are 

small, and the solution approaches that of idea1 MHD. The flow velocity 
vanishes everywhere except on the plates, like it does for the inviscid case 
(Re —► oo). The magnetic field is frozen into the plates and develops a 
slope (constant Bx) as the plates move. The slope of the magnetic field is 
determined by the value of H (the field lines slip through the plates due 
to resistivity). The slope of the magnetic field lines (B0/Bx) is constant 
at HIR.m. Figure 10 shows the results from simulation with H = 104. A 
finite value of the flow velocity exists only at the plates. The magnetic field 
lines are straight except at the plates where Bx is forced to vanish because 
of the boundary conditions. For clarity the slope of the magnetic field has 
been normalized to unity at the midplane between the plates for all of the 
Hartmann flow simulations. 

The limiting case of small Hartmann number is characterized by a flow 
that is dominated by viscous effects and a magnetic field that responds to 
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Figure 11: Hartmann flow simulation with H =0.1. Flow velocity vectors 
and magnetic field lines are shown. The velocity profile is linear and the 
magnetic field lines have an "S" shape caused by the bulk fluid flow. 

the bulk fluid flow and the large resistivity. The flow velocity varies linearly 
from the velocity of the top plate to the velocity of the bottom plate, as 
described by eqn(36). The magnetic field diffuses through the plate and 
the bulk fluid, but the fluid drags the field lines along with the flow. This 
produces a swayed "S" shape to the field lines with a peak magnetic field 
at the midplane. Since the slope of the field lines is inversely proportional 
to the magnitude of Bx, the r^ak in the magnetic field corresponds to the 
field lines with the minimum slope (most horizontal). The minimum slope 
is 4/Am. The simulation results for H = 0.1 are shown in Figure 11. Notice 
the linear velocity profile and the swayed magnetic field lines. 

Flows with Hartmann numbers in the intermediate ranges have solutions 
which exhibit characteristics of both of the limiting cases. The flow velocity 
falls to zero away from the boundaries in a scale length of L/H. This 
scale length is an appreciable fraction of the domain. The magnetic field is 
influenced by the motion of the plates and the fluid flow. The magnetic field 
has a swayed shape close to the plates and is linear around the midplane. 
Away from the boundaries (L/H < y < L—L/H), the value of Bx is constant 
at B0Rm/ H. Figure 12 shows the results from a simulation with H = 10. 
The velocity profile falls to zero around the midplane. The magnetic field 
lines have a swayed shape like those in Figure 11 but not as dramatic, and 
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Figure 12: Hartmann flow simulation with H = 10. Flow velocity vectors 
and magnetic field lines are shown. The flow velocity only exists close to 
the plates. The magnetic field lines are linear around the midplane. 

they are linear around the midplane. 
All of the Hartmann flow simulations converged to the analytical solution 

to within errors of 10-6. 

3.3     MPD Plasma Thruster 

The magnetoplasmadynamic (MPD) thruster is an electric propulsion device 
for spacecraft. Electrical propulsion is a technological field that is impor- 
tant to the Air Force and industry for satellite station keeping and orbital 
maneuvering. This problem demonstrates the dual time-stepping algorithm, 
which allows flexible choice of time steps so that fast and slow transients 
can be tracked accurately and efficiently. This is also the first problem that 
exercises all of the parts of the new algorithm (the approximate Riemann 
solver, the LU-SGS relaxation scheme, the resistive and viscous terms, and 
the dual time-stepping) simultaneously. The problem geometry is shown 
in Figure 13. A current is applied across the left boundary. This current 
creates a magnetic field in the z direction that in turn leads to a j x B force 
that accelerates the plasma to the right. We expect that the plasma initially 
in the domain will be accelerated up to some exit velocity on a fast time 
scale related to the Alfven time.   However, if there is a finite resistivity in 
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Conducting 
plates 

Figure 13: Geometry of the two-dimensional MPD thruster. 

the plasma, the magnetic field and current at the left boundary will diffuse 
into the domain on a slower time scale related to the resistive diffusion time. 
Ideally, one would like to take small time steps initially to follow the fast 
transient, and then switch to a much larger time step when the system is 
evolving more slowly. 

If there is no viscosity, then >, .e problem becomes one-dimensional in x, 
which is to the right in Figure 13. For this problem we chose a Lundquist 
number of 100, a reference magnetic field of 1 Tesla, a reference density 
of 10-5 kg/m3, a reference length of 10 cm, and an imposed current of 
30 kA. Figure 14 shows the plasma velocity as a function of x at several 
different times (normalized to the Alfven time). The top plot shows the 
results of an explicit time-differencing simulation with a CFL number of 
1. This simulation took 2600 time steps to advance the solution to t — 
10.17. Notice that between 3 and 5 Alfven times, the velocity reaches a 
constant uniform value along the length of the domain. The bottom plot is 
a simulation in which a CFL number of 1 was used until t = 1.5, at which 
point the CFL number was increased to 100 and the dual time-stepping 
implicit method was used to maintain stability. At each physical time step 

25 



0.00020 

> 

0.00000 
0.0 

Explicit Time Differencing, CFL No. = 1 

0.2 

t = 1.5 

t = 2.63 

t = 5.27 

t = 7.53 

t = 10.17 

04 06 
x/L 

000015 

£ 
3 

Pseudo Time Iterations, CFL No. = 100 

0.2 

t = 1.5 

t = 2.63 

t = 5.27 

t = 7.53 

t= 10.17 

x/L 

Figure 14:   Plasma velocity as a function of x and time for explicit time 
differencing simulation and dual time-stepping (implicit) simulation. 
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Figure 15:   Magnetic field as a function of x and time for explicit time 
differencing simulation and dual time-stepping (implicit) simulation. 
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Figure 16: Velocity vectors for the MPD thruster. The plasma is accelerated 
down the gun by the IxB force and a boundary layer develops. The internal 
blocks illustrate the decomposition of the domain used for the validation of 
the parallel version of the code. 
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Figure 17: Magnetic field (B:) contours for the MPD thruster. The gradient 
in the magnetic field produces the force applied to the plasma. 
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it took about 30 pseudo-time steps to converge, so the overall number of 
iterations was reduced to 1090 for the dual time-stepping case. The plots 
look similar to the explicit time-stepping results, except that the end of 
the fast transient is filtered out by taking such large time steps. On the 
other hand, Figure 15 shows that the magnetic field, which evolves on the 
slower resistive diffusion time scale, is captured equally well by the explicit 
and implicit schemes. The development of the plasma velocity and internal 
magnetic field can be seen in Figures 16 and 17. 

3.4     Magnetic Reconnection 

In this application we present results demonstrating agreement between the- 
oretical linear growth rates of the resistive instability in a sheet pinch and 
our non-linear resistive MHD code. We study resistive instabilities because 
they are a likely candidate for driving magnetic relaxation in the Helicity 
Injected Tokamak (HIT). The planar sheet pinch is a well understood config- 
uration12^15 and provides a good test problem and benchmark for our MHD 
code. 

We present the linear analysis of the sheet pinch.13'14 The linear equa- 
tions are solved numerically to obtain the eigenmodes. The eigenvalues 
(growth rates) are compared with the analytical theory.12 We then present 
the nonlinear analysis where our implicit MHD code is applied. A pertur- 
bation is initialized in the MHD code. The instability resulting from the 
perturbation is allowed to develop and finally saturates due to non-linear 
effects. The initially linear growth rate agrees with linear analysis. 

3.4.1     Problem Description 

We study the resistive instability in a planar sheet pinch, the symmetric 
tearing mode in a finite-thickness current sheet. See Figure 18 for schematic 
representation. For simplicity we examine the mode with the wave vector 
parallel to the equilibrium magnetic field. 

k || B0 (49) 

We define 

F = |^-U.h(l) (50) 
■t>ref \ß/ 

where a is the characteristic width of the current sheet.  The resistivity of 
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Figure 18:   Schematic of planar sheet pinch problem [from H. P.  Furth. 
Phys. Fluids 28(6), 1595 (1985)]. 

the current sheet is 

±- = cosh2 ( V 
1  , (51) 

which satisfies the equilibrium induction equation with no flow. The resis- 
tivity has a minimum in the middle of the current sheet (y = 0), and the 
magnetic field vanishes at y = 0 and is positive for y > 0 and negative for 
y < 0. See Figure 19 for the equilibrium profiles. 

3.4.2     Linear Analysis 

For the linear analysis, we begin with the incompressible, resistive MUD 
equations. We assume a variation of the perturbations of the form 

f = f(y,t)e ikx (52) 

The perturbation equations yield a pair of coupled, linear differential equa- 
tions.14 

1 I TTT - <*''* I - Fw (53) 

d_ (d2w 
8t [ dy2 

dt dy* 

a2w I = a2 Lu2 '£--• d2F 

dy2 * (54) 
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Figure 19: Equilibrium profiles of normalized magnetic field and resistivity. 

where Lu is the Lundquist number and 

Bo 

w = —ikrrvx\ 

a = ka 

Tr —  LUTA 

(55) 

(56) 

(57) 

(58) 

This coupled pair of PDE's are solved numerically using an implicit finite 
difference formulation. The eigenfunctions for Lu = 103 and a — 0.5 are 
shown in Figure 20. The growth rates have also been found analytically.12 

For the pure symmetric tearing mode the growth rate is given by 

LuV?5 

7 = 0.954(1- a2)4/5 (^) (59) 

For values of Lu greater than 500, the numerically calculated and analytical 
linear growth rates agree to within a few percent. 
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Figure 20: The eigenfunctions for Lu = 103 and a = 0.5. 
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Figure 21: The linear and non-linear evolution of the reconnected flux. 
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Figure 22: Flux contours of the developed non-linear instability. 

3.4.3     Non-Linear Analysis 

A planar current sheet is initialized in the code, and a perturbation of 
the same form as the linear eigenfunction is superimposed. The growth rate 
is determined from the amount of reconnected flux at y = 0. The evolution 
of the non-linear perturbation is shown in Figure 21. The result from the 
linear analysis is also shown. The non-linear growth matches the linear 
prediction during early development , " the instability, but during late time 
the instability saturates due to non-linear effects. Magnetic flux contours 
are shown in Figure 22 which show the magnetic island formation of the 
non-linear instability. 

3.5     HIT Injector 

One of the first applications for the new code will be to simulate the 
HIT experiment. The experiment is shown schematically in Figure 23. The 
geometry is toroidal, but only a single slice in the poloidal plane is pictured. 
HIT is a low aspect ratio tokamak that uses helicity injection to produce 
toroidal current. Gas is puffed into the injector and then a series of capacitor 
banks are discharged across the electrodes to form the plasma and interact 
with the applied magnetic fields to push the plasma into the confinement 
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Figure 23: Schematic of the HIT plasma experiment. 
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Figure 24:   Results of two-dimensional simulation of HIT injector, 
shows density contours and poloidal magnetic field lines. 
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region, where the tokamak plasma is formed. The full simulation will require 
three-dimensional, multiblock capability, which the code does not yet have. 
However, the injector portion of the experiment can be modeled as a single 
block. 

For the first simulation we made the further simplification of solving 
the two-dimensional problem rather thr.n the true cylindrical problem. We 
chose an initial poloidal bias field that is uniform throughout the injector 
with By = 0.001T and Bx = 0, where the x direction is up (toward the con- 
finement region) in Figure 23. The initial toroidal (out of plane) field was 
zero in this case, and a current of 30kA was applied across the electrodes 
(at the bottom boundary in Figure 23). Plasma was placed at the bottom 
boundary with a density ten times higher than the initial background den- 
sity. The Lundquist number was 1000. A grid with 44 cells in the x direction 
and 12 points in the y direction was used. 

The results of the simulation after ten Alfven times are shown in Figure 
24. Contours of density and the in-plane magnetic field lines are plotted. 
The current at the left boundary (x = 0) induces out-of-plane magnetic field 
that results in a j x B force that brings in plasma from the left and pushes 
the plasma to the right (in the x direction) towards the confinement region. 

35 



Figure 25: The 20 X 20 lower (a) and upper (b) tridiagonal block matrices 
for the LU-SGS algorithm with a grid of 4 x 5 cells. 

The contours of density show the higher density plasma being carried into 
the domain. In addition, the initially straight field lines are stretched as 
the plasma flows across them. However, the density contours do not overlay 
with the field lines as they would in the limit of zero resistivity. This is 
consistent with the relatively low Lundquist number for this simulation. 

4     Parallel Computer Implementation 

We have begun to investigate strategies for implementing the algorithm on 
p, rallel architectures. The first of the following sections des ibes our first 
and the simplest approach, which was to parallelize the LU-SGS algorithm 
in a point-wise manner. This proved to be too fine-grained to be efficient, so 
we have since opted for a domain decomposition approach which is described 
in the second section. The third section describes the implementation of this 
method on the MHD solver. 

4.1     Fine-Grain Parallelization 

The LU-SGS algorithm involves a double sweep of the computational 
domain. The forward (predictor) sweep solves a lower tridiagonal block ma- 
trix for the entire computational domain. The backward (corrector) sweep 
solves an upper tridiagonal block matrix. Figure 25 shows the form of the 
lower and upper block diagonal matrices for the case of a 4 x 5 grid. Because 
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Figure 26: The parallel speedup for a problem with constant size grid using 
a fine-grain parallelization approach. 

of the lower-upper form of the matrices, the solutions at grid cells along a 
line of constant i + j are independent. 

The simplest parallel implementation is to decompose the domain into 
its component cells, distribute the grid cells over the processors of the par- 
allel computer, and treat each cell as residing on a different processor. This 
approach exploits the independence of the solutions of the cells on lines of 
constant i+j. Communication between the cells provides the necessary syn- 
chronization. For these tests, we used the Parallel Virtual Machine (PVM) 
communication library which was developed at Oak Ridge National Labora- 
tory.16 PVM allowed us to connect a network of four DEC Alpha workstation 
and use them as our parallel computer. 

To determine the parallel effectiveness, we measured the speedup ob- 
tained when a problem grid of constant size was evenly distributed onto an 
increasing number of processors. Speedup is defined as the time required to 
find the solution with n processors divided by the time with one processor. 
For perfectly parallel implementations, the speedup would be equal to the 
number of processors. Any communication time and processor synchroniza- 
tion decreases the speedup. 

We used a 4 x 4 grid and varied the number of processors from one 
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to four. While this was a small size problem, it was sufficient to test the 
parallel implementation. The speedup results are shown in Figure 26. Some 
speedup can be seen; however, the amount is unsatisfactory. 

The low efficiencies indicate that the simplest approach for parallel im- 
plementation of the LU-SGS algorithm is inadequate. The results are not 
surprising since the grain of parallelization in this approach is too fine and 
requires excessive communication. The number of grid cells in practical 
applications will be much greater than the number of processors. This sug- 
gests dividing the domain into a number of large blocks, so that the grid 
cells within a block are located on the same processor (and memory) and 
do not need to communicate through message passing. 

4.2     Coarse-Grain Parallelization 

In this section, we describe the coarse-grain parallelization of the MHD 
solver and the performance of this approach applied to a real problem. 

The algorithm was parallelized using the domain decomposition tech- 
nique (DDT). This technique is based on the simple idea of "divide and 
conquer" The integral form of a general conservation law is 

2-JdVQ + fdS-F(Q) = JdVS(Q), (60) 
n E n 

where Cl is the domain and E is the boundary of fi. Q is the vector of 
conserved variables, F(Q) is the flux of the conserved variables, and S(Q) 
is the vector of source terms. By splitting the domain fi into p subdomains 
such that 

n=Un-' <61) 
one can replace eqn(60) with a set of p conservation equations applied on 
the subdomains £},-. 

d_ 
dt 
^ [dV Q + IdS ■ F(Q) =  f dV S(Q),    i = l,2,...,p (62) 

n. s. n, 

Each of these discretized equations is solved by a single processor.   Each 
processor uses the boundary values copied from neighboring subdomains. 
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Figure 27:  (a) Strip decomposition and (b) patch decomposition of a 2-D 
domain. 

4.2.1     Domain Decomposition 

To abstract the computer architecture, we assume that a set of p processors 
can be assigned to run the code and that these processors implement a 
message passing system. For simplicity the original domain is assumed to 
be a square of size n x n. 

The 2-D version of the algorithm was \ \rallelized. There are two tech- 
niques available for the decomposition of 2-D domains, the strip decompo- 
sition and the patch decomposition which are shown in Figure 27. 

Strip decomposition is implemented by dividing the original domain in 
subdomains of n x j, and it might be thought of as a 1-D decomposition. 
With strip decomposition each subdomain needs to exchange data with two 
neighbors except the subdomains at the boundaries of the original domain 
which communicate with only one neighbor. 

The communication time for an interior subdomain was defined by Zhu17 

as 

TD2l = 2(a + 8ßn) (63) 

where a is the communication start-up time, ß is the time required to send 
one byte of data, and the 8 means that the data are represented as double 
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Figure 28: Column decomposition of a 3-D domain is an immediate exten- 
sion of the patch decomposition of 2-D domains. 

precision variables (their size is eight bytes). 
Patch decomposition is implemented by dividing the original domain in 

With this method each processor has to communicate with four 

neighbors unless it is situated on the boundaries of the original domain and 
it has two or three neighbors. For simplicity it is assumed that p is an even 
square number and n is evenly divisible by y/p. The communication time 
for an internal subdomain is 

s/v x VP 

TD22 =4{a + 8ß (64) 

For a fixed grid size, Tß22 decreases with the number of processors since 
in eqn (64) the number of processors appear at the numerator. In contrast, 
Tß21 stays constant with the number of processors. 

This made the patch decomposition an obvious choice for our implemen- 
tation. The technique will also provide a straightforward extension to the 
column decomposition of 3-D domains (see Figure 28). 

4.2.2     Implementation of the Patch Decomposition 

The programming model used for the implementation was single program 
multiple data (SPMD). Each processor runs the same code on the data 
corresponding to its subdomain. One processor has to perform the domain 
decomposition and send the data to the other processors. This processor 
was designated as the main task. 

Assuming that there are p processors available for running the code 
they can be arranged in a processor grid of pT x pc = p where pr is the 
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number of rows and pc is the number of columns. The size of the original 
computational domain is m x n. It is possible to have subdomains of equal 
sizes only if m and n are evenly divisible with pc and pT respectively. The 
domain decomposition was implemented such that some processors receive 
an extra row or extra column if m and n are not divisible by pc and pT. 

Physical coupling of the subdomains is accomplished by the exchange 
of internal boundaries. A processor sends the data from the cells next to 
its boundaries to the neighboring processors if they exist. The receiving 
processor assigns the received data to the cells of its respective boundaries. 
If a processor does not have a neighbor in a certain direction the boundary 
conditions are applied to that boundary. Since the algorithm uses a five- 
point stencil only one row/column needs to be exchanged. 

4.2.3 Message Passing 

One of the goals of the project is to develop a portable code. A first step in 
assuring the portability was to use a message passing system commonly 
available on parallel supercomputers and on workstation clusters. This 
system is the Message Passing Interface (MPI),18 which was adopted as 
a standard in May 1994 by industry and academia. Hardware and software 
vendors' implementation of MPI provides parallel program developers with 
a consistent set of subroutines callable from FORTRAN77 and C. In our 
code we made use of the basic point-to-point communications subroutines 
and global communications subroutines. The point-to-point communica- 
tion subroutines were used for the domain decomposition and boundary 
exchange while the global communication srbroutines were used for conver- 
gence checking. All message passing systems (PVM, MPL) support point- 
to-point and global communications subroutines so that by using only the 
basic set we provided for a facile portability to systems not supporting MPI. 

4.2.4 Load Balancing 

The load balancing for this code is performed by distributing an approx- 
imately equal number of cells to each processor. This is accomplished by 
the main task during the domain decomposition phase. Since the number of 
floating point operations performed by each processor is the same, a static 
domain decomposition is sufficient to ensure that the processors have an 
equal share of the computing load. If the code takes were to allow for time- 
dependent ionization or other localized phenomena which require additional 
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Speedup  vs.   Number   of   Processors 

□   Explicit       ■   Implicit 

16 32 64 

Number   of   Processors 

Figure 29:   Fixed grid (400 x 80) speedup results.    Note the superlinear 
speedup of the explicit mode. 

operations in a limited region of the computational domain, then a dynamic 
load balancing procedure may be necessary. A simple algorithm for dynamic 
load balancing is the masked multiblock described by Borrelli et al.19 We 
will implement the masking algorithm in future versions of the code if it 
becomes necessary. 

4.2. Results 

In order to measure the performance of the code we applied the parallel 
version to the plasma gun problem described in Section 3.3. The paral- 
lel version was checked against the sequential version, and both produced 
identical results. 

There are two criteria generally used for the performance analysis of 
parallel codes: (1) the speedup Sp = Tseq/Tp and (2) the efficiency Ep = 
Sp/p, where Tseq is the time needed for the best sequential algorithm to 
complete the task and Tp is the time needed for the parallel algorithm run 
on a number of p processors to complete the same task. Note that the 
definition of speedup used here is more rigorous and meaningful than the 
one commonly used since it is based on the sequential version and not the 
parallel version on one processor. 
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We ran the parallel code on the IBM SP2 with a fixed grid of size 400x80 
on a processor pool of varying size: 4, 8, 16, 32 and 64 processors. The 
speedup for the explicit and implicit modes is shown in Figure 29. As 
expected the speedup increases with the number of processors assigned to 
run the code. For the explicit mode the speedup is superlinear, which seems 
to contradict Amdahl's law 

SP = %r-=; :■ (65) 
- communication 

.      /  ,:_i   *■ computation,* 

Assuming that no time is used for communication and that the sum of the 
computation time for aD processors is equal to the sequential computation 
time, the maximum speedup is linear (for p processors the speedup is p). 
However, Amdahl's law does not take in consideration the architecture of the 
system used, in particular the cache effects. On the IBM RS/6000 machines, 
which constitute the nodes of the SP2, the data is passed from the main 
memory to the CPU through a data cache. A data cache miss involves a 
delay of eight CPU cycles while the data in the cache can be accessed in 
one cycle.20 Noting that an add and multiply operation (a FLOP) takes one 
CPU cycle the conclusion is that a data cache miss decreases the performance 
significantly. By increasing the number of processors in the pool and keeping 
the overall problem size constant, we reduced the amount of data assigned 
to a processor. Its data cache could hold more data thus reducing the 
number of cache misses and improving the performance, which explains the 
superlinear speedup. The same behavior was observed by Michl et al., on a 
cluster of IBM RS/6000/500 workstations.21 

The speedup for the explicit mode is higher than that for the implicit 
mode because the implicit mode is the more computationaly intensive and 
is, therefore, less sensitive to cache misses. One has to be careful when 
comparing the results presented in Figure 29 since the number of iterations 
until convergence is reached for the implicit mode depends on the number 
of processors used. 

The trend of the speedup shows an increasing slope for both explicit 
and implicit modes which indicates that the code is far from communication 
saturation. Saturation occurs when the time spent on communications be- 
comes comparable with the computation time. If the number of processors 
is increased and the size of the subdomains becomes smaller, each processor 
will have fewer computations to perform, but the total time spent in ex- 
changing the data on the boundaries will increase. The total time spent for 
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boundary exchange can be found using the formula for the communication 
time for an internal subdomain [eqn(64)] and multiplying it with the number 
of processors in a pool p, 

Tbdry exch  = pTß72  = 4.(crp + 8ßlly/p~). (66) 

The total time spent on boundary exchanges varies proportionally with p. 
For the processor pools with a non-square number of processors we have 

run the code on grids organized as pT x pc and the transpose pc x pr, so that 
the number of row cells versus column cells changed. The results showed 
that a decomposition whose subdomains have longer rows performs better 
than one with longer columns. This is consistent with the data cache misses 
that were observed previously. An improvement of 20-30% in the measured 
speedup was obtained by modifying the domain partitions. It should be 
noted that this result is particular to IBM architecture, and the dependency 
of the obtained speedup on domain decomposition will vary on other archi- 
tectures. The speedup results shown in Figure 29 for 8 and 32 processors 
have been averaged. 

In order to eliminate the cache effects from the performance analysis we 
ran the code on grids that scaled with the number of processors. The size of 
the grid on each processor remained constant. As the number of processors 
was increased, the grid increased proportionly. The speedup results are 
presented in Figure 30. Again note that the speedup is measured relative 
to the sequential version of the code and not the parallel version run on a 
single processor. 

Th " speedup for a perfectly parallel code for the scaled grid is unity for 
any number of processors. Our results show a speedup that is less than 
unity and it decreases with the number of processors. This is an expected 
result since the total communication time increases with the number of 
processors. Since the slope of the speedup is gradual and it appears to 
flatten, we conclude that the parallel code performs satisfactorily on scaled 
grids. 

5     Professional Interactions 

5.1     Project Personnel 

The personnel directly involved in this project are listed below. 
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SoeeduD vs. Number of Processors 
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Figure 30: Scaled grid (50 x 10 per processor) speedup results. 

Name Position 
Uri Shumlak 
D. Scott Eberhardt 
Thomas R. Jarboe 
Byoungsoo Kim 
Ogden S. Jones 
Bogdan Udrea 
David Taflin 

Research Assistant Professor 
Associate Professor 
Professor 
Research Associate 
Graduate Student 
Graduate Student 
Graduate Student 

5.2     Collaborations 

5.2.1     Air Force Phillips Laboratory 

Dr. Robert Peterkin and Dr. Thomas Hussey of the High Energy Plasma 
Physics Division on parallelization approaches to MACH3 and on the 3- 
D Rayleigh-Taylor instability in solid liners. Additional discussions have 
included liner stabilization by a sheared axial flow. 
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5.2.2 Lawrence Livermore National Laboratory 

Dr. Charles Hartman of the Magnetized Plasmas Division on stabilization 
of the z-pinch using sheared axial flows. This collaboration resulted in the 
publication listed below. 

5.2.3 University of Michigan 

Prof. Bram van Leer, Prof. Kenneth Powell, and Prof. Philip Roe of the 
Aerospace Engineering Department on approximate Riemann solvers for the 
MHD plasma model and the zero eigenvalue issue. 

5.2.4 University of Colorado 

Prof. Steve McCormick of the Applied Math Department on three-dimensional 
multigrid algorithms. 

5.2.5 University of Washington 

Prof. Randy LeVeque of the Applied Math Department on approximate 
Riemann solvers and their applications to multidimensional problems. 

5.3 Publications 

A journal article has been submitted to the Journal of Computational Physics. 
The title is "An Implicit Approximate Riemann Solver for Non-Ideal Mag- 
netohydrodynamics" by 0. S. Jones, U. Shumlak, and D. S. Eberhardt. It 
has beei. accepted pending revisions. 

A journal article resulting from the collaboration with the Air Force 
Phillips Laboratory and Lawrence Livermore National Laboratory was pub- 
lished. The article is titled "Sheared Flow Stabilization of the m = 1 Kink 
Mode in Z-Pinches" by U. Shumlak and C. W. Hartman. The citation is 
Physical Review Letters 75 (18), 3285 (1995). 

5.4 Presentations 

A paper explaining our project was presented at the Twenty-First Annual 
IEEE International Conference on Plasma Sciences, Santa Fe, New Mex- 
ico, June 1994. The title was "An Implicit Algorithm for the Ideal MHD 
Equations." 
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A paper describing our completed two-dimensional parallel code was pre- 
sented at the Seventh Joint EPS - APS International Conference on Physics 
Computing, Pittsburgh, Pennsylvania, June 1995. The title was "An Im- 
plicit Approximate Riemann Solver for Multi-Dimensional MHD Computa- 
tions on Parallel Computers." 

A paper discussing the magnetic reconnection results was presented at 
the Thirty-Seventh Annual American Physical Society Meeting of the Di- 
vision of Plasma Physics, Louisville, Kentucky, November 1995. "Time- 
Dependent Calculations of Resistive Tearing Instabilities Using a New Im- 
plicit MHD Solver." 

A paper presenting the findings of the stabilization of the z-pinch by 
sheared axial flows was presented at the Thirty-Seventh Annual American 
Physical Society Meeting of the Division of Plasma Physics, Louisville, Ken- 
tucky, November 1995. "Sheared Flow Stabilization of the m = 1 Kink Mode 
in Z-Pinches." 

6     Conclusions 

The successful development of the two-dimensional, viscous, resistive version 
of the advanced implicit algorithm and the implementation of the algorithm 
on parallel architectures indicate that we are making significant progress 
toward our project objectives. This research project has been presented at 
an international conference, and more presentations are planned. A journal 
article has been submitted to a refereed journal and its acceptance seems 
likely. 

Valuable collaborations have been formed w*th the Air Force Phillips 
Laboratory, Lawrence Livermore National Laboratory, and other universi- 
ties. 

The continuing development of this project will include extending the 
algorithm to three dimensions, installing the three dimensional algorithm 
into Phillips Laboratory's MHD code, MACH3, and applying the code to 
plasma experiments to calibrate the code and gain physical insight. 
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